DEPARTMENT OF CHEMISTRY

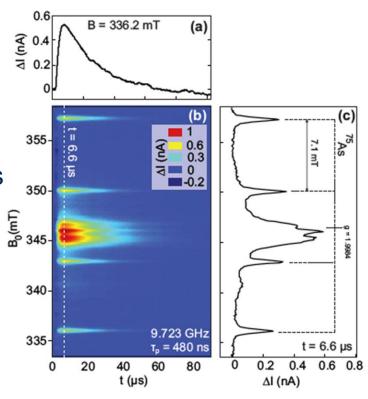
Centre for Advanced Electron Spin Resonance

"a state-of-the-art facility for use by biochemists, chemists and physicists"

October 2024

Introductory Lecture

- User Applications
- Instrumentation
- ESR Personnel
- How to use CAESR
- Magnet Hazards, Chemical,
- Microwave, and Laser Safety
- Sample Preparation
- Data Storage & Processing
- User Resources



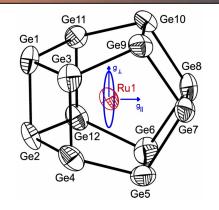
User Applications

- Diamagnetic → Paramagnetic
 - 20 Å to 120 Å
 - Synthesize & Characterize labels:
 - Nitroxides, Trityl, Gd(III);
 - Redox/ E-chem to open shell states
- Intrinsic Paramagnets
 - Paramagnetic Catalyst Intermediates
 - Metallo-enzyme Mechanisms
 - Single Molecule Magnetism
- Transient Paramagnets
 - Photo-Activated Transient States
 - 1 ns resolution
 - Electrical &/or Optical Det

Pulsed EDMR

Jose Goicoechea group (1/2)

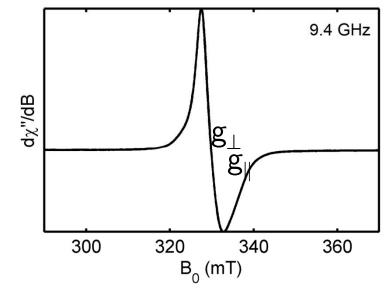



CW-EPR characterization

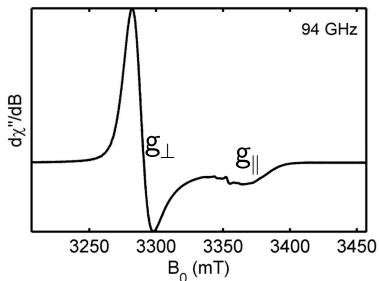
$$h\nu = g_{eff} \mu_B B_0$$

$$g_{eff} = \sqrt{g_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 \sin^2 \theta}$$

by experiment, $g_{\parallel}=1.993$ $g_{\perp}=2.043$


 \mathcal{L}_{2c}

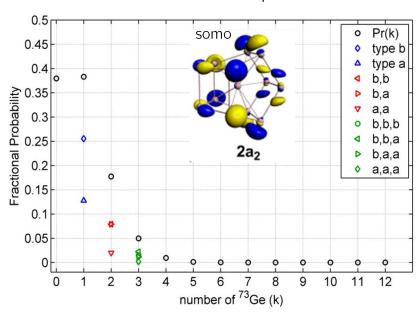
neat solid, room temperature


J. McGrady DFT predicts

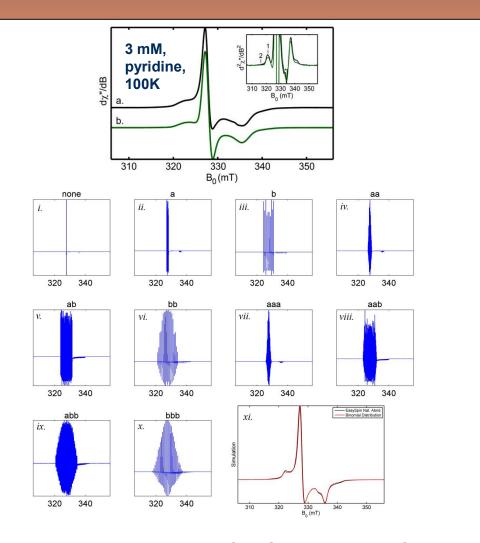
$$g_{||} = 2.000$$

 $g_{\perp} = 2.023$

J. Am. Chem. Soc. 2014, 136 (4), 1210-1213



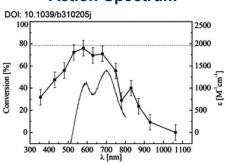
Jose Goicoechea group (2/2)


What about 73 Ge? I = 9/2

J. McGrady DFT predicts 4x ax. hfc 3 MHz 8x eq. hfc -20 MHz

$$Pr(k) = n!f^{k} (1-f)^{n-k} / k!(n-k)!$$

- n total number of sites
- *k* number of occupied sites
- f ⁷³Ge abundance, 7.76%


Fraser Armstrong (emeritus)

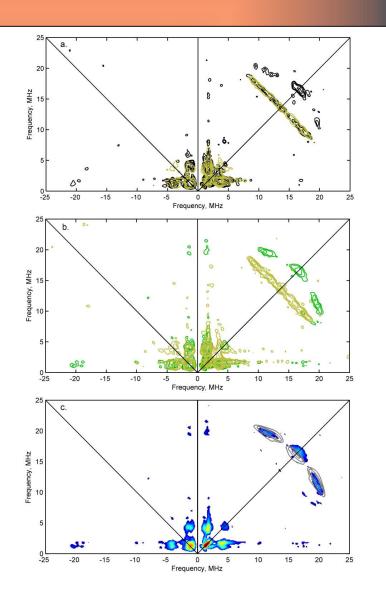
NiFe Hydrogenase

- Verify that NiC at low pH is consistent with the literature.
- HYSCORE was measured at 2.5 K
- Photolysis of the hydride, followed by annealing, leads to characteristic NiC hyperfine interaction.

Action Spectrum

Dark-adapted sample, mixture of NiC & NiL

NiL
30 min. of laser
pulses
1 mJ pulse energy
550 nm wavelength
20 Hz repetition rate


NiC 90 min. annealing at 200K

NiC simulation

A(1H)=[18.4 -10.8 -18] /MHz

Lit. ENDOR of *R. eutropha*,

Brecht, *et al.*, JACS 2003, 125, 13075.

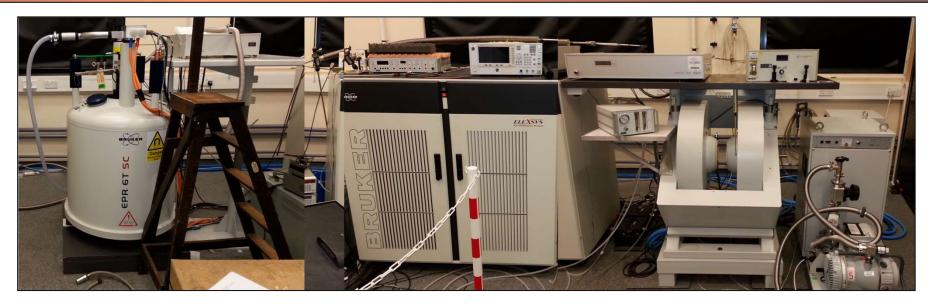
ESR Instrumentation

5 research instruments

<u>name</u>	<u>GHz</u>	<u>band</u>	method	<u>location</u>
EMX_{MICRO}	9.1 - 9.9	X	CW	ICL F19
E580	9.1 - 9.9	X	CW / Pulsed	ICL F11
	33 - 35	Q	CW / Pulsed	
E680	9.1 - 9.9	X	CW / Pulsed	ICL F12
	92 - 94	W	CW / Pulsed	
E380	9.1 - 9.9	X	CW / Pulsed	Clarendon 020
Krymov	130	D	CW / Pulsed	Clarendon 020

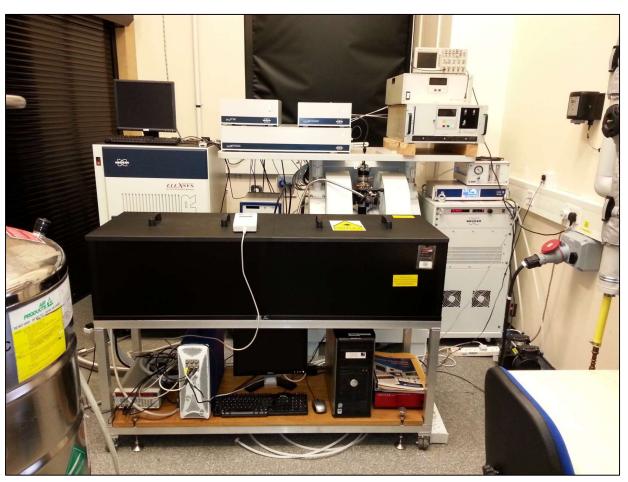
EMX_{MICRO}

ICL F19



- CW-EPR only
- Excellent SNR
- 2.5 300 K with ESR-900
- 100 450 K with N₂ heater
- 77 K with N_{2(I)} finger dewar
- Automatic goniometer
- Room interlocked for Class
 4/3B lasers
- User scheduling

ICL F12



- 9.1-9.9 GHz, X-band & 94 GHz, W-band
- 2.5 300 K with CF-935 & ESR-900
- OPO laser: 213-1700 nm, 6-100 mJ, 7 ns pulse length 20 Hz
- API & ProDel automation
- Arbitrary Waveform Generator (AWG)
- Room interlocked for Class 4/3B lasers

ICL F11

- X-band and Q-band
- Arbitrary Waveform Generator (AWG)
- 140 W at Q-band
- ProDel & API programmable
- 2.5 300 K with CF-935 & ESR-900 cryostats
- OPO laser 355, 410-2200 nm; 4-13 mJ; 7 ns length, 20 Hz
- Room interlocked for Class 4/3B lasers

CAESR personnel

Professor Christiane Timmel http://research.chem.ox.ac.uk/christiane-timmel.aspx

Professor Arzhang Ardavan https://www2.physics.ox.ac.uk/contacts/people/ardavan

Dr Will Myers

Office 72651 ICL F20a

Lab 72665 ICL F12

Fax 75410

william.myers@chem.ox.ac.uk

http://research.chem.ox.ac.uk/williammyers.aspx 1. Run CAESR & Services in Chemistry

- 4. Consultative role to students and staff
- 5. Collaborate with Department and External groups
- 6. Assist in joint publications
- 7. Pursue, publish, and present peer-reviewed research
- 9. Involved in the submission of grant applications
- 14. Students and staff training
- 15. Responsible for facility safety regulations
- -- Assisting w/ supervision of Part II and D. Phil. student projects
- -- Booking Meetings
- Teaching: Lecturing, small-group teaching, tutoring

CAESR Induction • Oct. 2024

Laser contact: Dr. Kevin Henbest

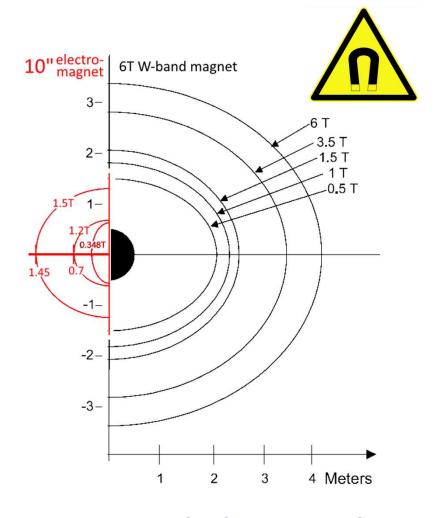
How to Use the CAESR SRF

- Independent: Previous ESR (EPR) or support of experienced group member, ask for any help.
- 2. Semi-independent: Complete training, then independent measurements, scheduling, and data analysis. User asks for support as required.
- 3. With CAESR staff: Complete training, then semi-independent measurements and scheduling. Extended support with project development, data analysis and publications.
- **4. Service:** "One-off" projects are rare. Routine or repetitive measurements are generally not possible, (see #2).
- **5. Collaboration:** D. Phil student of the Timmel or Ardavan groups &/or Will Myers, works on your project, with measurements, data analysis, & publication(s) as a part of their research.

Typical User Sequence for ESR

- Discussion with Scientific Applications Manager
 - Research plan, safety, and literature
 - Preliminary sample list
 - Purchase of clear-fused Quartz EPR tubes
- Booking CW-EPR time, COSHH
- Sample Preparations in F13
- CW-EPR in F19, with any required training
- Monthly booking meeting for Pulsed EPR
- Pulsed EPR and / or W-band CW-EPR

Safety in the ESR Labs.


Strong Magnetic Fields

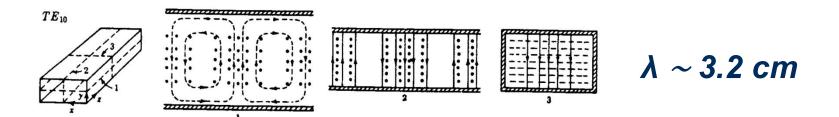
Hazards to:

- -heart pacemakers
- -magnetic back or ID cards
- -watches (non-LCD)

Stray fields in Corridors
-outside F12 at a max field

Electromagnet field is mostly within its yoke

- Wet lab work in F13 → departmental guidelines
- All samples (hazardous or not), need COSHH form on file in F20a.
- Samples occasionally break -- act quickly to save before complete thawing.
- Safety courses are available for how to handle liquid nitrogen and liquid helium.



Not everyone, but next year ...

- All CAESR labs are inter-locked for use of Class 4 and 3B lasers.
- Pulsed OPO lasers for 230 2200 nm, 4 100 mJ, 20 Hz available for Transient ESR. CW lasers at 355 and 532 nm are available.
- New laser users must attend Chemistry Department safety lecture (11:15 am, *next*).
- Users who wish to use their own lasers in CAESR must follow Departmental laser installation procedures.
- Laser Safety forms for each lab must be signed.

Microwave Safety

- Place microwave sources in Standby when changing resonators and samples.
- DON'T stare into the end of an open waveguide with microwaves propagating outward.
- X-band (9.4 GHz) exposure may result in cataracts.
 - approx. 60 min of CW at 200 mW / cm²

CAESR Lab ICL F13

- Drying oven, balance, sonicator, vortex mixer
- Fume Cupboard and Schlenk/Vacuum Line
- Flame sealing tubes after de-gassing via FREEZE-PUMP-THAW.
- Flame-sealing J. Young tube bottoms.
- Mbraun LABstar; Cary60 UV-vis

Tube Dimensions		Micro-	Sample		
O.D. (mm)	I.D. (mm)	L (mm)	wave Band	Vol. (µL)) <u>Comment</u>
0.84	0.7	100	W	3	General, for powders and frozen solutions
1.6	1.2	100	Q	10	Dielectric ENDOR resonator
3	2.6	150	X	40	For split ring resonator
3.80	2.79	150	X	80	For ENDOR pulsed resonator, high precision wall thickness
4	3	250	X	250	For all CW resonators and MD5, low-dielectric solutions/solids only

Tubes of are for sale in ICL F20a, and on the R12 Oracle purchasing system.

Sample Concentrations

Transition metals 1 - 5 mM

Organic radicals 20 - 200 mM

Solids 1×10^{15} to 1×10^{18} spins

Sample concentration vs. Spin concentration

Single Crystals – 1 x 10⁹ – auto goniometer

Equal concentrations, Equal noise,

Different ESR signal width

Data Storage and Transfer

Storage

On the Spectrometers: Data is kept in .../xeprfiles/data/YourPl group/You/DateName/...

Back-Up: \chem.ox.ac.uk\SRF\ESR\Spectrometer_DataBackup\...

→ But no guarantees, you are responsible for your data.

Transfer

File Transfer Protocal (FTP) is available on E580, E680, and EMXmicro

See: \\chem.ox.ac.uk\SRF\ESR\ NewUser_IntrosAndFAQ\FTP_FileTransfer_conversion.pdf

Data Processing Software

Windows, Mac and Linux:

Matlab - dept. - Data plotting, integration, spin quantitation, simulations Python, C, C++, Java, Fortran, MS Excel, etc. -free -

EasySpin - free, w/ Matlab - www.easyspin.org - simulation software

Spinach – free, w/ Matlab - www.spindynamics.org - simulation software

SpinDynamica – free, w/ Mathematica - www.spindynamica.org - simulation software

+ many others

Windows:

SpinCount - \$ - Prof. M. Hendrich, Carnegie Mellon Univ. (not in CAESR)

Linux:

XSophe - \$\$\$\$ - Bruker BioSpin (not in CAESR)

User Resources

3rd year EPR practical

See: \\chem.ox.ac.uk\SRF\ESR\

Video lecture links

Lecture course slides

Spectrometer Manuals

Stop by -or- questions by e-mail

http://caesr-web.chem.ox.ac.uk/links.aspx

- Main Reference Books
 - Pulse EPR methods
 - Selected Systems
 - Instrumentation
- Conferences
- Organizations
- Databases and Software
- Spectrometer Makers
- List of 169 Reference Books

http://caesr-web.chem.ox.ac.uk/home

Graduate Training Sessions

Morning ~10-12 pm https://forms.office.com/e/63ViYPZgXa

Explanation of webpage and online resources

Tour of ESR Facility

How to Set up cryogenics

How to use a Spectrometer

Send an interest e-mail to william.myers@chem.ox.ac.uk

Instrumentation description

Demonstration: CW-EPR & Pulsed EPR of LiPc

Pulsed ESR of BDPA: Electron-Nuclear DOuble Resonance

Afternoon ~ 2:30 pm to 5 pm

Demonstration: Transient ESR with LASER excitation

Double Electron-Electron Resonance

Bruker Pulsed EPR Course – group use of the spectrometer